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Estimators

Framework: statistical inference from a sample (x1, . . . , xn) ∈ E n

seen as a realization of a random vector (X1, . . . , Xn) following a law
with an unknown parameter θ ∈Θ (usuallyΘ=R or Rd ). This
parameter may fully characterize the law or may be just one
parameter among others.

Definition (Estimator of a parameter)

Ï function θn : E n →Θ the parameter set, for size n samples
Ï family of functions (θn)n∈N∗ to deal with any sample size

Examples: 1
n

∑n
1 xi , max1≤i≤n xi , constant function c, ...

Point estimation: find some estimators such that the random
variable θ̂n

def= θn(X1, . . . , Xn) gives some information about θ with
high probability, so that there is a high probability that the value
θn(x1, . . . , xn) from the sample holds some information about θ.
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Classical properties

Definition (estimator properties)

Let (θn)n∈N∗ a family of estimators for some parameter θ ∈R (or Rd )
of the random vector (Xn)n∈N∗ , and denote θ̂n = θn(X1, . . . , Xn). Such
estimators are called:

Ï unbiased if ∀n ∈N∗, E(θ̂n) = θ
Ï asymptotically unbiased if limn→∞E(θ̂n) = θ
Ï consistent if θ̂n

P→ θ (convergence in probability)

Ï strongly consistent if θ̂n
a.s.→ θ (almost sure convergence)

Example: let (Xn)n≥1 i.i.d. random variables of finite mean µ and
consider µn(x1, . . . , xn) = 1

n

∑n
1 xi , then µn is an estimator of µ which

is unbiased (linearity of E) and strongly consistent (strong law of
large numbers).
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Classical properties

Interpretation of estimator properties

Ï unbiased if ∀n ∈N∗, E(θ̂n) = θ
Given size n, the estimator may fail once (the outcome ω may
yield θ̂n(ω) = θn(x1, . . . , xn) 6= θ) but generating many samples
will give the right value θ on average.

Ï asymptotically unbiased if limn→∞E(θ̂n) = θ
Same as above if sample size also grows.

Ï consistent if θ̂n
P→ θ (convergence in probability)

Larger samples have a higher proportion of good estimates.
But if one makes a single sample grow, the estimator may fail
in a recurrent way.

Ï strongly consistent if θ̂n
a.s.→ θ (almost sure convergence)

The larger the sample, the better the estimation.
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Designing estimators

Some approaches:

Ï Method of moments

Ï Maximum likelihood estimation (MLE)

Ï Maximum spacing estimation (MSE)

M1IF - ENS Lyon Performance Evaluation & Networks 5/24



Point Estimation
Interval Estimation
Hypothesis Testing

Point Estimators
Designing and comparing estimators
Some classical estimators

Method of moments

Idea: match empirical moments from the model (X1, . . . , Xn) and
from the data (x1, . . . , xn), then solve for unknown parameters.

General scheme for models with d parameters θ1, . . . ,θd

1 Express empirical moments for the model: mk = 1
n

∑n
i=1E(X k

i )
as function of θ1,...,θd (if you can)

2 Consider empirical moments for the sample: mk = 1
n

∑n
i=1 xk

i

3 Choose some values of k for which you match those moments:
mk = mk

4 Solve this system of equations for unknown θ1, . . . ,θd

Advice: best suited for models (X1, . . . , Xn) with i.i.d. random
variables, where it often yields consistent estimators (law of large
numbers).
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Method of moments

Example: (X1, . . . , Xn) i.i.d. ∼U ([a,b]) uniform over [a,b], where
m1 = a+b

2 and m2 = b3−a3

2(b−a) . Consider the system of equations

m1 = m1 and m2 = m2, its solution is an = m1 −
√

3(m2 −m2
1) and

bn = m1 +
√

3(m2 −m2
1).

Example: (X1, . . . , Xn) i.i.d. ∼B(p) Bernoulli, where m1 = p and
m2 = p. Then depending on the choice of equation, one get the
estimators pn = m1 or m2, which are the same for these particular
laws.
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Maximum likelihood estimation (MLE)

Definition (Likelihood of a sample)

Ï Let θ ∈R and fθ the law of vector (X1, . . . , Xn) which supposedly
generated the sample (x1, . . . , xn), the likelihood of (x1, . . . , xn),
denoted by Ln(θ) or Ln(θ, x1, . . . , xn), is fθ(x1, . . . , xn).

Ï Particular case (i.i.d. sampling): when X1, . . . , Xn are i.i.d. of
law fθ, then Ln(θ) = fθ(x1) · · · fθ(xn).

Definition (Maximum Likelihood Estimator)

An estimator θn of θ is called a maximum likelihood estimator if θn

maximizes Ln(θ), i.e. θn(x1, . . . , xn) = argmax
θ∈R

Ln(θ, x1, . . . , xn)
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Maximum likelihood estimation (MLE)

In practice: maximize the function or its logarithm, thus study
∂Ln (θ)
∂θ (x1, . . . , xn) or ∂ logLn (θ)

∂θ (x1, . . . , xn), when defined, to find θn .

Example: faulty machine with i.i.d. Bernoulli errors B(p). MLE of p
for sample (x1, . . . , xn) ∈ {0,1}n ?

Let n0 = |{i | xi = 0}| and n1 = |{i | xi = 1}|. Study the variations of
p 7→ Ln(p, x1, . . . , xn) = pn1 (1−p)n0 by differentiating.
The maximum is reached for pn = n1/(n0 +n1) =∑n

i=1 xi /n

Example: Poisson traffic with i.i.d. exponential inter-arrivals of
parameter λ. MLE of λ for sample (x1, . . . , xn) ∈Rn+ ?

Study the variations of λ 7→ Ln(λ, x1, . . . , xn) =λne−λ(x1+···+xn ) by
differentiating.
The maximum is reached for λn = n/(x1 +·· ·+xn)
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Consistency of MLE

Hypotheses: model = random vector X following a law from the
family fθ, θ ∈Θ, and θn some MLE estimator of θ.

Theorem (Consistency of MLE)

If the next conditions are satisfied:

Ï identification: θ1 6= θ2 ⇒ fθ1 6= fθ2

Ï compactness: Θ is compact

Ï continuity: (θ, x) 7→ fθ(x) is continuous

Ï bounded entropy: ∀θ ∈Θ, Hθ =−∫
fθ(x) log fθ(x)d x <+∞

Then θ̂n
P→ θ
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Comparison of estimators

Some quality index: mean squared error (MSE)

R(θn ,θ)
def= E(θ̂n −θ)2

Definition (Dominant estimators)

Let θn and ψn two estimators of θ, θn is said to dominate ψn if ∀θ,
R(θn ,θ) ≤ R(ψn ,θ) with strict inequality somewhere.

Remark: there is not always an estimator dominating all others.
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Fisher Information

Hypotheses: model = random vector X following a law from the
family fθ, θ ∈Θ.

Definition (Fisher Information)

If the next conditions are satisfied:

Ï the support of fθ is indep of θ

Ï ∂ fθ
∂θ (x) and ∂2 fθ

∂θ2 (x) exists ∀x, ∀θ ∈Θ
Ï ∀A borelian set, the next integrals are well-defined and

∂
∂θ

∫
A fθ(x)d x = ∫

A
∂
∂θ fθ(x)d x, ∂2

∂θ2

∫
A fθ(x)d x = ∫

A
∂2

∂θ2 fθ(x)d x

Then the Fisher information is I (θ) = E
[(

∂ log fθ
∂θ (X )

)2
]
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Efficient estimator

Theorem (Cramer-Rao bound)

Let θn unbiased estimator of θ, where Fisher information I (θ) is
well-defined and non null, then

R(θn ,θ) ≥ 1
n

1
I (θ)

Definition (Efficient estimator)

An estimator is called efficient if it reaches this lower bound.

Theorem (Efficiency of MLE)

Let θn MLE estimator of θ, under the same assumptions as the
consistency theorem, then θn is efficient andp

n(θ̂n −θ)
D→N (0,1/I (θ))
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Some standard estimators

Definition (standard mean estimator)

Let (x1, . . . , xn) ∈Rn sample supposedly generated by i.i.d. random
variables of finite mean µ. The standard estimator of µ is the
empirical mean: µn(x1, . . . , xn) = 1

n

∑n
i=1 xi . It is unbiased and

strongly consistent.

Definition (standard estimator of a finite discrete distribution)

Let (x1, . . . , xn) ∈ E n sample supposedly generated by i.i.d. random
variables of discrete distribution over finite set E, with mass pe for
e ∈ E. The standard estimator of vector p = (pe )e∈E is the frequency
vector: pn(x1, . . . , xn) = ( 1

n

∑n
i=1 1{e}(xi )

)
e∈E . It is an MLE, unbiased

and strongly consistent.
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Some standard estimators

Definition (standard variance estimator when mean µ is known)

Let (x1, . . . , xn) ∈Rn sample supposedly generated by i.i.d. random
variables of finite known mean µ and unknown variance V . The
standard variance estimator of V is the empirical variance:
V n(x1, . . . , xn) = 1

n

∑n
i=1(xi −µ)2. It is unbiased and strongly

consistent.

Definition (unbiased standard variance estimator when mean µ is
unknown)

Let (x1, . . . , xn) ∈Rn sample supposedly generated by i.i.d. random
variables of finite unknown mean µ and unknown variance V . The
standard variance estimator of V is the unbiased empirical
variance: V n(x1, . . . , xn) = 1

n

∑n
i=1(xi −µn)2 where

µn(x1, . . . , xn) = 1
n−1

∑n
i=1 xi .. It is unbiased and strongly consistent.
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Confidence Interval

Framework: statistical inference from a sample (x1, . . . , xn) ∈ E n

seen as a realization of a random vector (X1, . . . , Xn) following a law
with an unknown parameter θ ∈Θ.

Definition (Confidence interval)

Let 0 <α< 1, consider two function I−n and I+n from Rn to R, if
P(θ ∈ [I−n (X1, . . . , Xn), I+n (X1, . . . , Xn)] =α (resp. ≥α), then this
interval (whose extremities are random variables) is called a
confidence interval for θ of exact level α (resp. of level α).

Extension: if this definition holds only when n →+∞, it is called an
asymptotic confidence interval.
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Confidence Interval

Example: suppose that the sample (x1, . . . , xn) has been generated
by i.i.d. normal laws N (µ,1), find a confidence interval for µ of
exact level α.
Consider the standard estimator of µ which is the empirical mean,
then µ̂n = 1

n

∑n
i=1 Xi , follows the normal law N (µ,1/n), thusp

n(µ̂n −µ) ∼N (0,1). For δ> 0, we have:

P(|µ̂n −µ| ≤ δp
n

) = 1p
2π

∫ +δ

−δ
e−x2/2d x

Given α, choose δ such that the integral equals α, then we can
rewrite the inequalities and get:

P(µ ∈ [µ̂n −δ/
p

n, µ̂n +δ/
p

n]) =α
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Confidence Interval

Example: suppose that the sample (x1, . . . , xn) has been generated
by i.i.d. normal laws N (µ,σ2) where σ is known and µ unknown,
find a confidence interval for µ of exact level α.
Consider the standard estimator of µ which is the empirical mean,
then µ̂n = 1

n

∑n
i=1 Xi , follows the normal law N (µ,σ2/n), thusp

n(µ̂n −µ)/σ∼N (0,1). For δ> 0, we have:

P(|µ̂n −µ| ≤ δσp
n

) = 1p
2π

∫ +δ

−δ
e−x2/2d x

Given α, choose δ such that the integral equals α, then we can
rewrite the inequalities and get:

P(µ ∈ [µ̂n − δσp
n

, µ̂n + δσp
n

]) =α
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Confidence Interval

Example: suppose that the sample (x1, . . . , xn) has been generated
by i.i.d. normal laws N (µ,σ2) where σ is known and µ unknown,
find a confidence interval for µ of exact level α.

Confidence interval for the mean of i.i.d. normal laws when the
variance is known

1 choose the confidence level α

2 find the (1+α)/2-quantile q(1+α)/2 of N (0,1)

3 return the confidence interval µ ∈ [µ̂n − q(1+α)/2σp
n

, µ̂n + q(1+α)/2σp
n

] of

exact level α, where µn(x1, . . . , xn) = 1
n

∑n
i=1 xi .
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Confidence Interval

Example: suppose that the sample (x1, . . . , xn) has been generated
by i.i.d. normal laws N (µ,σ2) where σ is unknown and µ unknown,
find a confidence interval for µ of exact level α.
Hint: consider the estimators for the mean µn = 1

n

∑n
i=1 Xi and for

the variance V n = 1
n−1

∑n
i=1(Xi −µn)2, then

µn−µp
V n /n

∼ t (n −1) the

Student distribution with n −1 degrees of freedom.

Confidence interval for the mean of i.i.d. normal laws when the
variance is unknown

1 choose the confidence level α

2 find the (1+α)/2-quantile q(1+α)/2 of t (n −1)

3 return the confidence interval of exact level α,
µ ∈ [µ̂n − q(1+α)/2σ̂np

n
, µ̂n + q(1+α)/2σ̂np

n
], where µn = 1

n

∑n
i=1 xi and

σn = ( 1
n−1

∑n
i=1(xi −µn)2

)1/2
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A decision problem

Framework: same as before but with a decision problem.

Example: let X random variable of uniform law in [a,1] where
0 ≤ a < 1 is unkown. A sample (x1, . . . , xn) has been generated by n
independent trials of X . Can you find an algorithm which decides
which is the right answer:

Ï H0: a = 0

Ï H1: a > 0

Ideas ?

Warning: two risks

Ï Reject H0 whereas it is true (Type I error)

proba ≤β

Ï Accept H0 whereas it is false (Type II error)

try minimizing
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A decision problem

Example: let X random variable of uniform law in [a,1] where
0 ≤ a < 1 is unkown. A sample (x1, . . . , xn) has been generated by n
independent trials of X . Can you find an algorithm which decides
which is the right answer: either H0: a = 0, or H1: a > 0
Idea: choose a threshold s > 0 and run the next algorithm

Test
1 if min(x1, . . . , xn) < s, accept H0, else reject H0

Question: how to choose s such that Type I error has proba ≤β ?

Suppose a = 0, P(Type I error) =P(min(X1, . . . , Xn) ≥ s) = (1− s)n .
Thus choose s such that (1− s)n ≤β, that is 1−β1/n ≤ s ≤ 1. Now
note that if a > 0, P(Type II error) = 0 if s ≤ a and
P(Type II error) = 1− ( 1−s

1−a )n if s > a. To minimize this proba while
ensuring low Type I error, choose s = 1−β1/n .
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Chi-square test of goodness of fit

Hypothese: X random variable with values in {a(1), . . . , a(k)}

Ï H0: X has vector p = (p(1), . . . , p(k)) as mass function

Ï H1: X has another distribution

Question: given a sample (x1, . . . , xn) generated by independant
trials of X , provide an algorithm to decide H0 with confidence level
α (that is P(Type I error) ≤ 1−α).

Theorem

Let fn(i )
def= 1

n

∑n
j=1 1{a(i )}(x j ) frequency of a(i ) in the sample.

Let χ2(p, fn)
def= n

∑k
i=1

[p(i )− fn (i )]2

p(i ) .

Assuming H0, we have χ2(p, fn)
D→χ2(k −1) (χ2-distribution with

k −1 degrees of freedom).
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Chi-square test of goodness of fit

Theorem

Let fn(i )
def= 1

n

∑n
j=1 1{a(i )}(x j ) frequency of a(i ) in the sample.

Let χ2(p, fn)
def= n

∑k
i=1

[p(i )− fn (i )]2

p(i ) .

Assuming H0, we have χ2(p, fn)
D→χ2(k −1)

Application: you throw a dice 120 times and you obtain the next
output frequencies

Number 1 2 3 4 5 6
Frequency 14 16 28 30 18 14

Is this dice unbiased (hypothesis H0) ? Answer with confidence
level 95%

p = ( 1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6 ), χ2(p, fn) ≈ 12.8 for sample, look at χ2(5) table →
0.95-quantile ≈ 11.07 → reject
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